Temporal Chaos Versus Spatial Mixing in Reaction-Advection-Diffusion Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal chaos versus spatial mixing in reaction-advection-diffusion systems.

We develop a theory describing the transition to a spatially homogeneous regime in a mixing flow with a chaotic in time reaction. The transverse Lyapunov exponent governing the stability of the homogeneous state can be represented as a combination of Lyapunov exponents for spatial mixing and temporal chaos. This representation, being exact for time-independent flows and equal Pe clet numbers of...

متن کامل

Optimal Stretching in Advection-Reaction-Diffusion Systems.

We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted...

متن کامل

Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise

We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...

متن کامل

Entropy Solution for Anisotropic Reaction-Diffusion-Advection Systems

In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.

متن کامل

Bilinear Controllability of a Class of Advection-Diffusion-Reaction Systems

In this paper, we investigate the exact controllability properties of an advection-diffusion equation on a bounded domain, using timeand space-dependent velocity fields as the control parameters. This partial differential equation (PDE) is the Kolmogorov forward equation for a reflected diffusion process that models the spatiotemporal evolution of a swarm of agents. We prove that if a target pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2004

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.93.174501